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Multicritical behaviour in the q-state Potts lattice-gas 

T Temesvirit and L HerCnyiS 
f Institute for Theoretical Physics, Eotvos University, H-1088 Budapest, Puskin U 5-7, 
Hungary 
$ Biophysical Research Laboratory of Hungarian Academy of Sciences, H-1088 Budapest, 
Puskin U 9, Hungary 

Received 11 August 1983 

Abstract. The phase diagram of the q-state Potts lattice-gas is determined exactly on a 
Cayley tree for q < 2 .  We use this result to make some conjectures concerning the 
lower-dimensional cases. It is argued that there should be a tetracritical point, different 
from the transition point where king droplets diverge, in the case of three-dimensional 
correlated site-bond percolation ( q  = 1). In two dimensions, the critical exponent yp of 
the mean cluster size at the king critical point is derived from the extended den Nijs 
conjectures: yo = $ = 1.896. 

The diluted version of the q-state Potts model (Wu 1982) has been used to describe 
the changeover in the nature of the transition occurring in the pure system at qc 
depending only on the lattice dimension d (Nienhuis et af 1979). The Hamiltonian 
of the diluted system can be defined as 

x = - J  [ (a, , ,  -l)flf ,+aflt~l+C[Cc.-h(6~,, ,  -1)ltl (1) 
(11)  1 

where t, = 0 ( t ,  = 1) if the lattice site i is vacant (occupied) and s, assumes one of the 
values 1 , 2 , .  . . , q if t, = 1. The Potts interaction is given by the Kronecker delta, while 
the parameter a characterises the lattice-gas coupling. The density of ‘magnetic’ atoms 
is governed by the chemical potential p and the last term in (1) breaks the symmetry 
of the Potts spins preferring the state 1 for a positive magnetic field. Only nearest- 
neighbour ferromagnetic interactions ( J ,  a 3 0) are considered. 

Depending on the values of 4, d and a the q-state Potts lattice-gas defined by 
Hamiltonian ( 1) exhibits very different phase diagrams with first-order, critical and 
even multicritical points. Nienhuis et af (1979) found a tricritical point separating the 
critical and first-order transition surfaces for q 6 qC(2)  and a = 1. In two dimensions 
renormalisation-group investigations for q = 1 (Coniglio and Klein 1980), q = 2 (Berker 
and Wortis 1976, Kaufman et af 1981) and q = 3 (Berker et af 1978) showed that a 
line of tricritical points existed for the whole range O + s  a < 2 and ended at the pure 
( q +  1)-state Potts transition point for a = 2. The third thermal eigenvalue of the 
tricritical fixed point, however, was found to become relevant for q < qm(d) in some 
larger dimensions with 1 s q m ( d )  s 2 (Nienhuis et af 1981). Thus a tetracritical point 
appeared in the system and Nienhuis et af (1981) argued that tricritical behaviour was 
governed by a classical (Gaussian) fixed point for 4 < q m ( d ) .  

At least in one case we can exactly check whether this tetracritical point exists or 
not. We can determine the whole phase diagram of Hamiltonian (1) (for h = 0) on 
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the Cayley tree which can be considered as an infinite-dimensional lattice. The 
tetracritical point will be located and the topology of the phase diagram analysed for 
q < 2 = qc( d = CO) in order to  make some conjectures concerning the three-dimensional 
q = 1 and q = 2 cases. 

It is well known that thermodynamic properties are influenced essentially by 
boundary effects on a Cayley tree because of the finite surface to volume ratio in this 
case. The zero-temperature limit of the phase boundary, for example, depends on 
how the single-site variables in Hamiltonian (1) are divided between the incident 
bonds. It will be shown in a more detailed paper that ground state properties on 
regular lattices change abruptly at H $caJ - p = 0 where c is the coordination number 
(Temesviri and HerCnyi 1983). To ensure that this zero-temperature transition be 
correctly reproduced, Hamiltonian (1) must be regrouped in the following manner: 

Another difficulty arises from the definition of the order parameters. For regular 
lattices, the following definitions seem to be convenient: 

where (. . .) means thermal averages and the lattice consists of N sites. Here ml(mz)  
is the q-state Potts (the lattice-gas) order parameter and the homogeneity of the 
lattices has been utilised in deriving the second equation (the index '0' refers to  the 
site at the origin). This homogeneity, however, is absent for the Cayley tree. The 
spontaneous magnetisation was found to be zero for all temperatures in the case of 
the pure Ising and Potts models (Eggarter 1974, Wang and Wu 1976), while the 
averages at the orgin showed the usual behaviour of an order parameter vanishing at 
the transition point with mean-field exponents. Therefore we adopt as the definition 
of the order parameters the second parts of equations ( 2 a )  and ( 2 b ) .  

The method to calculate thermodynamic functions on Cayley trees is well known 
(see e.g. Eggarter 1974, Wang and Wu 1976) and is displayed in figure 1: the summation 
over surface variables can be performed successively, renormalising the single-site 
parameters at the boundary in each step. Using the notations 

, 3 (3) x e - H / k T  y E e - a J / 2 k T  z=  e-J!kT 

the recursion relations can be obtained as follows: 

X,+ Y[l+(q-1)  exp(-h,/kT)] 
X,Y + 1 +(q -  l )Z exp(-h,/ kT) X,.'=X( 

(4) 
X, Y + Z +  [ 1 + (q - 2121 exp(-h,/ kT)  exp(-h,+,/kT) =exp(-h,/kT) ( X,Y+l+(q - l )Zexp( -h , /kT)  

Eliminating all the degrees of freedom but those at the origin and its surrounding sites, 
the field variables go to a fixed point X * ,  h* in the thermodynamic limit. As a last 
step, equation (4) is used with c, instead of c -  1, and X ,  = X*, h, = h*, to obtain a 
single site with X,, = exp(-Hefl/ kT) and heR. The order parameters can be expressed 
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Figure 1. Cayley tree (or Bethe lattice) with branching ratio two ( c  = 3)  and the method 
for obtaining recursion relations of (4): after summing over the variables in the nth 
generation (surface sites), the single-site parameters (H and h )  of the ( n  + 1)th generation 
will be renormalised. 

by these effective fields: 

1 - exp( - heff/ k T )  
1 +exp(Heff/kT)[l +(4 -1 )  exp(-heff/kT)l’ ml= exp(Hefi/kT) 

( 5 )  
1-4-l  exp(HedkT)[l  + ( 4 - 1 )  e x p ( - h e d W 1  

1 +exp(HedkT)[l  + ( 4  - 1) exp(-hefflkT)I 
’ 

We will consider only the c = 3 case. The lattice-gas and q-state Potts transitions 
can be located by analysing equation (4). There is always a zero-field fixed point X,*, 
h*=O when h=O: 

m2 = 

xi  = X [ ( X , *  + 4 Y ) / ( X 8  Y + 1 + ( 4  - l)Z)I2. (6) 

From (6) we can deduce that a first-order lattice-gas transition takes place in two 
cases: (i) when the initial value X gets from the region of attraction of one fixed point 
to that of another and (ii) when an attractive fixed point becomes marginal and finally 
disappears. A q-state Potts transition is obtained when the zero-field fixed point 
becomes unstable against a small perturbation of the magnetic field: the ordered phase 
is characterised by a finite-field fixed point. Omitting the calculational details (see 
Temesviri. and Herknyi 1983) we only cite the result. Near the transition (c1 -0) 

h*/ kT == -[4q/(q - 2)]~1 

c1= 2(1 - Z ) / [ X , * Y  + 1 + ( q -  1)Z]- 1. 

(7) 

where c1 > 0 ( c1 < 0) in the ordered (disordered) phase and is given by 

(8)  

Thus for 4 < 2 we can write using (4), ( 5 ) ,  (7) and the definition of the critical exponent 
P :  

Since Y and 2 are analytical at T,, it follows from (8) that X i  approaches its critical 
value (for fixed J,  p and a )  with the same exponent p. Therefore we can determine 
P by investigating the cubic equation (6). 

m, - hefi - h* - c1 - I T -  TclP, 
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The results for the phase diagram in the case 4 < 2 are summarised in table 1 and 
its topology is shown in figures 2(a )  and ( b ) .  Here the tricritical line, as contrasted 
with the q = 2 case (Temesvari and HerCnyi 1983), coincides with the intersection of 
the q-state Potts and lattice-gas transition surfaces. Three different values were 

Table 1. Transition surfaces, lines and points for the q-state Potts lattice-gas on a Cayley 
tree with branching ratio two ( 1  s q < 2 ) .  The notation U = q-’ [ l+  (9 - 1)Z]  is used. There 
is a first-order q-state Potts transition also on a part of the lattice-gas surface bounded by 
the lines EY, YJ, JK, KD and DE. 

Name and/or notation Boundary lines or points Defining equation 

Lattice-gas transition surface 
(with fixed point changing) 

Gk ,  FD, DH and HG U -  Y 
1 - Y  

x = 9-3 x,, 

Lattice-gas transition surface 
(with a marginal fixed point) 

GH, HI and IG 

q-state Potts transition 
surface K A  and AB 

BC, CE, EY, YJ, JK,  

Lattice gas critical line I and G 

Tricritical line Y and J 

Line separating the two types 
of lattice-gas surfaces 

H and G 

Line of type-I 
critical endpoints 

Line of type-I1 
critical endpoints 

J and K 

E and Y 

Pure ( 9 +  1)-state Potts 
transition point Y 

Tetracritical point J 

qu( U + 3  Y 2 +  012 
X =  = x;, 

8 Y ( u  - 3 Y 2 +  C )  

with v ( u2 - 10UY2 + 9  Y4)l’’ 

4qY(1- u)2[2-(q+ l ) u ]  
( 4 -  1)[2- (q+ l ) u + ( q -  1 )  Y212 

X =  

- 
= XPOll, 

u = 9 Y 2  and X=27qY3 

Y ( 2 - 3  Y )  
1-2Y 

U =  

x = l ( a  = 2 )  

Y = o  

z=o 
z=o 

z= 1 



L579 

A 

Letter to the Editor 

la1 

+ 
X 

1 
/ 

Figure 2. The topology of the phase diagram (see table 1 for notation). ( a )  Exact result 
for the Cayley tree (c  = 3) in the case 1 < q < 2. The dotted line (GH) separates the two 
types of lattice-gas transition. ( b )  Exact result for the Cayley tree ( c  = 3)  in the case of 
percolation ( q  = 1). The tetracritical point (J) and the transition point where Ising droplets 
diverge (Y) coincide. The lattice-gas transition surface with the marginal fixed point 
disappears at q = 1 (H = I ) .  ( c )  Conjectured phase diagram for three-dimensional percola- 
tion. The tricritical line YJ is expected to have classical exponents. ( d )  Two-dimensional 
phase diagram for percolation. The Ising critical point I is now also the place where the 
system begins to percolate ( I  = K).  Y1 is the one-state Potts tricritical line. 

obtained for the critical index p :  (i) p = 1 on the q-state Potts surface and along type-I 
and type-I1 critical endpoints; (ii) p =+ along the tricritical line; (iii) p = $  in the 
tetracritical point. Type-I critical endpoints were investigated, in the Ising case, by 
Ziman et al (1982) and they are characterised by phase diagrams with a lattice-gas 
critical point in the ordered phase. This line of type-I critical endpoints becomes a 
tricritical line through the tetracritical point at 

CY = 1 +ln3/ln(2q + l ) ,  q < 2. 

The q-state Potts lattice-gas niodel becomes the Ising-correlated site-bond percolation 
problem in the limit q = 1 +  (Coniglio and Klein 1980, Wu 1981). On the Cayley tree 
this problem has been investigated in many papers (Coniglio 1975, 1976, Coniglio et 
al 1979,1982, di Liberto e ta l  1983). We are interested here in how the phase diagram 
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changes when q reaches 1. As can be seen from figure 2 ( b ) ,  the lattice-gas transition 
surface with the marginal fixed point disappears for q = 1. This is related to the fact 
that 1 = q,(oo) - 1 and thus the ( q  + 1)-state Potts transition becomes continuous just 
in the case of percolation (for details see Temesviri and HerCnyi 1983). Furthermore, 
the tetracritical point and the ( q  + 1)-state Potts transition point merge and form a 
new multicritical point where Ising droplets diverge (Coniglio and Klein 1980, KertCsz 
er a1 1982). The order parameter of Ising droplets has the critical exponent p =$, 
instead of p =A, and the +WO types of critical endpoints join together in this new 
multicritical point. 

We expect, however, another type of phase diagram when q < q m ( d )  and q < 
q , ( d )  - 1 in lower dimensions (see figure 2(c) with d = 3 and q = 1): since the tetra- 
critical point must disappear continuously at q m ( d )  (,his is not the case on the Cayley 
tree because of the abrupt change in the phase diagram at q = 2  (Temesviri and 
HerCnyi 1983)), it moves away from Y when q increases toward q m ( d ) .  They are 
connected with a line of classical tricritical points (Nienhuis er a1 1981). Taking into 
account that the upper tricritical dimensionalities of the Ising and Potts models are 
three and four, respectively, we can draw q m ( d )  schematically as in figure 3 (see also 
Nienhuis er a1 1981). 

I , .  
1 2 3 4 5 6  

d 

Figure 3. q,(d) and q,(d) are drawn schematically with full and broken lines, respectively. 
For q S q , ( d )  a tetracritical point can be found in the system and tricritical behaviour 
should be classical. At q, (d)  the nature of the Potts transition changes from second to  
first order (it is taken from Wu (1982)). 

The most important consequences of the tetracritical point on the phase diagram 
are obtained in the percolational case ( q  = 1). In two dimensions (figure 2 ( d ) ) ,  where 
1 > q m ( 2 ) ,  for a bond probability pB which is unity (pB= 1-Z, see Kasteleyn and 
Fortuin 1969, Coniglio and Klein 1980, Wu 1981), i.e. for Ising-correlated site 
percolation, the king critical point (I) lies on the percolational transition surface 
(Coniglio er a1 1977, Coniglio and Klein 1980) and it is actually a tricritical point in 
the context of the q + 1 limit of the diluted Potts model. In three dimensions (figure 
2( c)),  however, the system percolates on the coexistence curve below the Ising critical 
temperature (Miiller-Krumbhaar 1974, Sykes and Gaunt 1976) at the point K which 
is now a type-I critical endpoint. As has been stated, we expect that the tetracritical 
point, where the line of type-I critical endpoints merges with the Ising (or lattice-gas) 
critical line, should be at a bond probability p i  which is larger than that of Ising 
droplets p z .  We think that figure 4 in Heermann and Stauffer (1981) supports this 
idea: pB for the two types of critical endpoints are shown as functions of the temperature 
and the two curves do not meet at the king critical temperature. However, in discussions 
of Monte Carlo results a phase diagram similar to that on the Cayley tree ( p ;  = p z )  
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was always suggested (Stauffer 1981, Heermann and Stauffer 1981, KertCsz et a1 
1982). Further Monte Carlo work would be useful to investigate this point. 

Finally the exponent yp of the mean cluster size when approaching the Ising critical 
point along the temperature axis will be derived. In two-dimensional correlated site 
percolation (pB = 1) yp was found to differ from both the Ising and random percolational 
values (Sykes and Gaunt 1976, Coniglio and Klein 1980). From the usual scaling law 
yp = (2 - r]) v we can calculate yp using the probably exact values for the thermal and 
magnetic eigenvalues of the tricritical fixed point (den Nijs 1979, Nienhuis et a1 1979, 
1980, Pearson 1980, Nienhuis 1982): 

91 v=y,: = 1  and 2- r ]=2y h -d=w. 
Thus 

=a- 48-  1.896 (d=29p , ’  <PBc1)  

which can be compared with the series result yp= 1.91 kO.01 (Sykes and Gaunt 1976) 
and renormalisation-group value yp = 1.89 (Coniglio and Klein 1980). Although the 
scaling law used here has been stated by Coniglio and Klein (1980), they did not 
identify the Ising critical point with the q = 1 Potts tricritical point. 

The classical value of yp can also be calculated. When p i  > pB> p,’ in three 
dimensions, the tricritical fixed point should be classical: 

YT2 = 1 and 71 = O ,  
thus 

This value for yp in three dimensions should also be checked, together with the 
determination of yp in the tetracritical point (pB = p i ) ,  by further numerical work. 

One of us (TT) would like to acknowledge a helpful conversation with J KertCsz and 
discussions with P R u j h .  We are grateful to Z Ricz for a critical reading of the 
manuscript. This work was partially supported by a contract from the Research Institute 
for Technical Physics of the Hungarian Academy of Sciences. 
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